The Cee Lo Green Subgroup Theorem

edited 2013-03-11 18:50:27 in General

Theorem 1: For any prime factor p with multiplicity n of the order of a finite group G, there exists a Cee Lo Green p-subgroup of G, of order pn.

The following weaker version of theorem 1 was first proved by Cauchy, it is known as Cauchy's theorem.

Corollary: Given a finite group G and a prime number p dividing the order of G, then there exists an element of order p in G .

Theorem 2: Given a finite group G and a prime number p, all Cee Lo Green p-subgroups of G are conjugate to each other, i.e. if H and K are Cee Lo Green p-subgroups of G, then there exists an element g in G with g−1Hg = K.

Theorem 3: Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be written as pnm, where n > 0 and p does not divide m. Let np be the number of Cee Lo Green p-subgroups of G. Then the following hold:

  • np divides m, which is the index of the Cee Lo Green p-subgroup in G.
  • np ≡ 1 mod p.
  • np = |G : NG(P)|, where P is any Cee Lo Green p-subgroup of G and NG denotes the normalizer.

Comments

Sign In or Register to comment.